Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
2.
Nucleic Acids Res ; 51(14): 7496-7519, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37283053

RESUMO

Modified nucleotides in non-coding RNAs, such as tRNAs and snRNAs, represent an important layer of gene expression regulation through their ability to fine-tune mRNA maturation and translation. Dysregulation of such modifications and the enzymes installing them have been linked to various human pathologies including neurodevelopmental disorders and cancers. Several methyltransferases (MTases) are regulated allosterically by human TRMT112 (Trm112 in Saccharomyces cerevisiae), but the interactome of this regulator and targets of its interacting MTases remain incompletely characterized. Here, we have investigated the interaction network of human TRMT112 in intact cells and identify three poorly characterized putative MTases (TRMT11, THUMPD3 and THUMPD2) as direct partners. We demonstrate that these three proteins are active N2-methylguanosine (m2G) MTases and that TRMT11 and THUMPD3 methylate positions 10 and 6 of tRNAs, respectively. For THUMPD2, we discovered that it directly associates with the U6 snRNA, a core component of the catalytic spliceosome, and is required for the formation of m2G, the last 'orphan' modification in U6 snRNA. Furthermore, our data reveal the combined importance of TRMT11 and THUMPD3 for optimal protein synthesis and cell proliferation as well as a role for THUMPD2 in fine-tuning pre-mRNA splicing.


Assuntos
Precursores de RNA , Proteínas de Saccharomyces cerevisiae , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Spliceossomos/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proliferação de Células/genética , Biossíntese de Proteínas , Metiltransferases/genética , tRNA Metiltransferases/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
J Chem Inf Model ; 63(12): 3637-3646, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37305901

RESUMO

The recent breakthrough made in the field of three-dimensional (3D) structure prediction by artificial intelligence softwares, such as initially AlphaFold2 (AF2) and RosettaFold (RF) and more recently large Language Models (LLM), has revolutionized the field of structural biology in particular and also biology as a whole. These models have clearly generated great enthusiasm within the scientific community, and different applications of these 3D predictions are regularly described in scientific articles, demonstrating the impact of these high-quality models. Despite the acknowledged high accuracy of these models in general, it seems important to make users of these models aware of the wealth of information they offer and to encourage them to make the best use of them. Here, we focus on the impact of these models in a specific application by structural biologists using X-ray crystallography. We propose guidelines to prepare models to be used for molecular replacement trials to solve the phase problem. We also encourage colleagues to share as much detail as possible about how they use these models in their research, where the models did not yield correct molecular replacement solutions, and how these predictions fit with their experimental 3D structure. We feel this is important to improve the pipelines using these models and also to get feedback on their overall quality.


Assuntos
Inteligência Artificial , Software , Cristalografia por Raios X , Biologia
4.
Acta Crystallogr D Struct Biol ; 79(Pt 4): 353, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995234

RESUMO

A figure in the article by Barbarin-Bocahu & Graille [(2022), Acta Cryst. D78, 517-531] is corrected.

5.
FEBS J ; 290(3): 688-691, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36334004

RESUMO

In metazoans, most proteins have pleiotropic cellular functions and have the ability to interact with several factors to accomplish these different functions. This is the case of eukaryotic ERH proteins, a family of homodimeric proteins involved in DNA replication and cell cycle control as well as in gene silencing by contributing either to the biogenesis of small interference RNAs (miRNAs, piRNAs) or to the recruitment of RNA decay machineries. Very recently, several crystal structures describing complexes formed by eukaryotic ERH proteins and several small peptides from various partners have highlighted the existence of different binding sites on the surface of ERH proteins. In this issue of The FEBS Journal, Wang et al. present the crystal structure of the complex formed between the human ERH protein and a short peptide of the CIZ1 protein, one of its partners. Altogether, this information will be particularly important for future studies aimed at dissecting the different biological functions governed by this family of highly conserved proteins. Comment on: https://doi.org/10.1111/febs.16611.


Assuntos
Proteínas de Ciclo Celular , Inativação Gênica , Fatores de Transcrição , Humanos , Divisão Celular , Replicação do DNA , MicroRNAs , Proteínas Nucleares/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/metabolismo
6.
iScience ; 25(7): 104646, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35756894

RESUMO

There is an urgent need for a molecular understanding of how SARS-CoV-2 influences the machineries of the host cell. Herein, we focused our attention on the capacity of the SARS-CoV-2 protein NSP2 to bind the human 4EHP-GIGYF2 complex, a key factor involved in microRNA-mediated silencing of gene expression. Using in vitro interaction assays, our data demonstrate that NSP2 physically associates with both 4EHP and a central segment in GIGYF2 in the cytoplasm. We also provide functional evidence showing that NSP2 impairs the function of GIGYF2 in mediating translation repression using reporter-based assays. Collectively, these data reveal the potential impact of NSP2 on the post-transcriptional silencing of gene expression in human cells, pointing out 4EHP-GIGYF2 targeting as a possible strategy of SARS-CoV-2 to take over the silencing machinery and to suppress host defenses.

7.
Microbiology (Reading) ; 168(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35394419

RESUMO

Mycolic acids are key components of the complex cell envelope of Corynebacteriales. These fatty acids, conjugated to trehalose or to arabinogalactan form the backbone of the mycomembrane. While mycolic acids are essential to the survival of some species, such as Mycobacterium tuberculosis, their absence is not lethal for Corynebacterium glutamicum, which has been extensively used as a model to depict their biosynthesis. Mycolic acids are first synthesized on the cytoplasmic side of the inner membrane and transferred onto trehalose to give trehalose monomycolate (TMM). TMM is subsequently transported to the periplasm by dedicated transporters and used by mycoloyltransferase enzymes to synthesize all the other mycolate-containing compounds. Using a random transposition mutagenesis, we recently identified a new uncharacterized protein (Cg1246) involved in mycolic acid metabolism. Cg1246 belongs to the DUF402 protein family that contains some previously characterized nucleoside phosphatases. In this study, we performed a functional and structural characterization of Cg1246. We showed that absence of the protein led to a significant reduction in the pool of TMM in C. glutamicum, resulting in a decrease in all other mycolate-containing compounds. We found that, in vitro, Cg1246 has phosphatase activity on organic pyrophosphate substrates but is most likely not a nucleoside phosphatase. Using a computational approach, we identified important residues for phosphatase activity and constructed the corresponding variants in C. glutamicum. Surprisingly complementation with these non-functional proteins fully restored the defect in TMM of the Δcg1246 mutant strain, suggesting that in vivo, the phosphatase activity is not involved in mycolic acid biosynthesis.


Assuntos
Corynebacterium glutamicum , Ácidos Micólicos , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Corynebacterium glutamicum/metabolismo , Ácidos Micólicos/metabolismo , Nucleosídeos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Trealose/metabolismo
8.
Acta Crystallogr D Struct Biol ; 78(Pt 4): 517-531, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362474

RESUMO

The breakthrough recently made in protein structure prediction by deep-learning programs such as AlphaFold and RoseTTAFold will certainly revolutionize biology over the coming decades. The scientific community is only starting to appreciate the various applications, benefits and limitations of these protein models. Yet, after the first thrills due to this revolution, it is important to evaluate the impact of the proposed models and their overall quality to avoid the misinterpretation or overinterpretation of these models by biologists. One of the first applications of these models is in solving the `phase problem' encountered in X-ray crystallography in calculating electron-density maps from diffraction data. Indeed, the most frequently used technique to derive electron-density maps is molecular replacement. As this technique relies on knowledge of the structure of a protein that shares strong structural similarity with the studied protein, the availability of high-accuracy models is then definitely critical for successful structure solution. After the collection of a 2.45 Šresolution data set, we struggled for two years in trying to solve the crystal structure of a protein involved in the nonsense-mediated mRNA decay pathway, an mRNA quality-control pathway dedicated to the elimination of eukaryotic mRNAs harboring premature stop codons. We used different methods (isomorphous replacement, anomalous diffraction and molecular replacement) to determine this structure, but all failed until we straightforwardly succeeded thanks to both AlphaFold and RoseTTAFold models. Here, we describe how these new models helped us to solve this structure and conclude that in our case the AlphaFold model largely outcompetes the other models. We also discuss the importance of search-model generation for successful molecular replacement.


Assuntos
Proteínas , Cristalografia por Raios X , Modelos Moleculares , Proteínas/química
9.
Wiley Interdiscip Rev RNA ; 13(1): e1673, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34044474

RESUMO

The translation of an mRNA template into the corresponding protein is a highly complex and regulated choreography performed by ribosomes, tRNAs, and translation factors. Most RNAs involved in this process are decorated by multiple chemical modifications (known as epitranscriptomic marks) contributing to the efficiency, the fidelity, and the regulation of the mRNA translation process. Many of these epitranscriptomic marks are written by holoenzymes made of a catalytic subunit associated with an activating subunit. These holoenzymes play critical roles in cell development. Indeed, several mutations being identified in the genes encoding for those proteins are linked to human pathologies such as cancers and intellectual disorders for instance. This review describes the structural and functional properties of RNA methyltransferase holoenzymes, which when mutated often result in brain development pathologies. It illustrates how structurally different activating subunits contribute to the catalytic activity of these holoenzymes through common mechanistic trends that most likely apply to other classes of holoenzymes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Capping and 5' End Modifications.


Assuntos
Metiltransferases , RNA Viral , Eucariotos/metabolismo , Humanos , Metiltransferases/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo
10.
Nat Commun ; 12(1): 770, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536434

RESUMO

Long non-coding RNAs (lncRNAs) contribute to the regulation of gene expression in response to intra- or extracellular signals but the underlying molecular mechanisms remain largely unexplored. Here, we identify an uncharacterized lncRNA as a central player in shaping the meiotic gene expression program in fission yeast. We report that this regulatory RNA, termed mamRNA, scaffolds the antagonistic RNA-binding proteins Mmi1 and Mei2 to ensure their reciprocal inhibition and fine tune meiotic mRNA degradation during mitotic growth. Mechanistically, mamRNA allows Mmi1 to target Mei2 for ubiquitin-mediated downregulation, and conversely enables accumulating Mei2 to impede Mmi1 activity, thereby reinforcing the mitosis to meiosis switch. These regulations also occur within a unique Mmi1-containing nuclear body, positioning mamRNA as a spatially-confined sensor of Mei2 levels. Our results thus provide a mechanistic basis for the mutual control of gametogenesis effectors and further expand our vision of the regulatory potential of lncRNAs.


Assuntos
Regulação Fúngica da Expressão Gênica , Meiose/genética , Mitose/genética , RNA Fúngico/genética , RNA Longo não Codificante/genética , Schizosaccharomyces/genética , Ligação Proteica , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
11.
Nucleic Acids Res ; 48(21): 12310-12325, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33166396

RESUMO

The Mtq2-Trm112 methyltransferase modifies the eukaryotic translation termination factor eRF1 on the glutamine side chain of a universally conserved GGQ motif that is essential for release of newly synthesized peptides. Although this modification is found in the three domains of life, its exact role in eukaryotes remains unknown. As the deletion of MTQ2 leads to severe growth impairment in yeast, we have investigated its role further and tested its putative involvement in ribosome biogenesis. We found that Mtq2 is associated with nuclear 60S subunit precursors, and we demonstrate that its catalytic activity is required for nucleolar release of pre-60S and for efficient production of mature 5.8S and 25S rRNAs. Thus, we identify Mtq2 as a novel ribosome assembly factor important for large ribosomal subunit formation. We propose that Mtq2-Trm112 might modify eRF1 in the nucleus as part of a quality control mechanism aimed at proof-reading the peptidyl transferase center, where it will subsequently bind during translation termination.


Assuntos
Regulação Fúngica da Expressão Gênica , Metiltransferases/genética , Biogênese de Organelas , Fatores de Terminação de Peptídeos/genética , Subunidades Ribossômicas Maiores de Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , tRNA Metiltransferases/genética , Sítios de Ligação , Biocatálise , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Metiltransferases/química , Metiltransferases/metabolismo , Modelos Moleculares , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Ribossômico/biossíntese , RNA Ribossômico/genética , RNA Ribossômico 5,8S/biossíntese , RNA Ribossômico 5,8S/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
12.
Nucleic Acids Res ; 48(19): 11068-11082, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33035335

RESUMO

tRNAs play a central role during the translation process and are heavily post-transcriptionally modified to ensure optimal and faithful mRNA decoding. These epitranscriptomics marks are added by largely conserved proteins and defects in the function of some of these enzymes are responsible for neurodevelopmental disorders and cancers. Here, we focus on the Trm11 enzyme, which forms N2-methylguanosine (m2G) at position 10 of several tRNAs in both archaea and eukaryotes. While eukaryotic Trm11 enzyme is only active as a complex with Trm112, an allosteric activator of methyltransferases modifying factors (RNAs and proteins) involved in mRNA translation, former studies have shown that some archaeal Trm11 proteins are active on their own. As these studies were performed on Trm11 enzymes originating from archaeal organisms lacking TRM112 gene, we have characterized Trm11 (AfTrm11) from the Archaeoglobus fulgidus archaeon, which genome encodes for a Trm112 protein (AfTrm112). We show that AfTrm11 interacts directly with AfTrm112 similarly to eukaryotic enzymes and that although AfTrm11 is active as a single protein, its enzymatic activity is strongly enhanced by AfTrm112. We finally describe the first crystal structures of the AfTrm11-Trm112 complex and of Trm11, alone or bound to the methyltransferase inhibitor sinefungin.


Assuntos
Proteínas Arqueais , Archaeoglobus fulgidus/enzimologia , RNA Arqueal/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
13.
Nucleic Acids Res ; 48(11): 6353-6366, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32396195

RESUMO

Most eukaryotic mRNAs harbor a characteristic 5' m7GpppN cap that promotes pre-mRNA splicing, mRNA nucleocytoplasmic transport and translation while also protecting mRNAs from exonucleolytic attacks. mRNA caps are eliminated by Dcp2 during mRNA decay, allowing 5'-3' exonucleases to degrade mRNA bodies. However, the Dcp2 decapping enzyme is poorly active on its own and requires binding to stable or transient protein partners to sever the cap of target mRNAs. Here, we analyse the role of one of these partners, the yeast Pby1 factor, which is known to co-localize into P-bodies together with decapping factors. We report that Pby1 uses its C-terminal domain to directly bind to the decapping enzyme. We solved the structure of this Pby1 domain alone and bound to the Dcp1-Dcp2-Edc3 decapping complex. Structure-based mutant analyses reveal that Pby1 binding to the decapping enzyme is required for its recruitment into P-bodies. Moreover, Pby1 binding to the decapping enzyme stimulates growth in conditions in which decapping activation is compromised. Our results point towards a direct connection of Pby1 with decapping and P-body formation, both stemming from its interaction with the Dcp1-Dcp2 holoenzyme.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Proteínas de Ligação a DNA/química , Endopeptidases/química , Endopeptidases/metabolismo , Endorribonucleases/química , Holoenzimas/química , Holoenzimas/metabolismo , Ligases/metabolismo , Modelos Moleculares , Organelas/enzimologia , Organelas/metabolismo , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição/química
14.
EMBO Rep ; 21(7): e49443, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32350990

RESUMO

RNA modifications have recently emerged as an important layer of gene regulation. N6-methyladenosine (m6 A) is the most prominent modification on eukaryotic messenger RNA and has also been found on noncoding RNA, including ribosomal and small nuclear RNA. Recently, several m6 A methyltransferases were identified, uncovering the specificity of m6 A deposition by structurally distinct enzymes. In order to discover additional m6 A enzymes, we performed an RNAi screen to deplete annotated orthologs of human methyltransferase-like proteins (METTLs) in Drosophila cells and identified CG9666, the ortholog of human METTL5. We show that CG9666 is required for specific deposition of m6 A on 18S ribosomal RNA via direct interaction with the Drosophila ortholog of human TRMT112, CG12975. Depletion of CG9666 yields a subsequent loss of the 18S rRNA m6 A modification, which lies in the vicinity of the ribosome decoding center; however, this does not compromise rRNA maturation. Instead, a loss of CG9666-mediated m6 A impacts fly behavior, providing an underlying molecular mechanism for the reported human phenotype in intellectual disability. Thus, our work expands the repertoire of m6 A methyltransferases, demonstrates the specialization of these enzymes, and further addresses the significance of ribosomal RNA modifications in gene expression and animal behavior.


Assuntos
Drosophila , Metiltransferases , Adenosina , Animais , Drosophila/genética , Humanos , Metiltransferases/genética , RNA Ribossômico , RNA Ribossômico 18S/genética , Caminhada
15.
Curr Genet ; 66(4): 689-692, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32144435

RESUMO

With the development of -omics approaches, the scientific community is now submerged by a wealth of information that can be used to analyze various parameters: the degree of protein sequence conservation, protein 3D structures as well as RNA and protein expression levels in various benign and tumor tissues, during organism development or upon exposure to chemicals such as endocrine disrupters. However, if such information can be used to identify genes with potentially important biological function, additional studies are needed to deeply characterize their cellular function in model organisms. Here, we discuss the case of such a gene: ERH, encoding a highly conserved homodimeric protein found in unicellular eukaryotes, plants and metazoan, of yet unknown biological function, which might be linked to mRNA metabolism and that is emerging as important for cell migration and metastasis.


Assuntos
Carcinogênese/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Humanos , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
16.
Sci Rep ; 10(1): 1034, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974447

RESUMO

Timely and accurate expression of the genetic information relies on the integration of environmental cues and the activation of regulatory networks involving transcriptional and post-transcriptional mechanisms. In fission yeast, meiosis-specific transcripts are selectively targeted for degradation during mitosis by the EMC complex, composed of Erh1, the ortholog of human ERH, and the YTH family RNA-binding protein Mmi1. Here, we present the crystal structure of Erh1 and show that it assembles as a homodimer. Mutations of amino acid residues to disrupt Erh1 homodimer formation result in loss-of-function phenotypes, similar to erh1∆ cells: expression of meiotic genes is derepressed in mitotic cells and meiosis progression is severely compromised. Interestingly, formation of Erh1 homodimer is dispensable for interaction with Mmi1, suggesting that only fully assembled EMC complexes consisting of two Mmi1 molecules bridged by an Erh1 dimer are functionally competent. We also show that Erh1 does not contribute to Mmi1-dependent down-regulation of the meiosis regulator Mei2, supporting the notion that Mmi1 performs additional functions beyond EMC. Overall, our results provide a structural basis for the assembly of the EMC complex and highlight its biological relevance in gametogenic gene silencing and meiosis progression.


Assuntos
Proteínas de Transporte/química , Inativação Gênica/fisiologia , Meiose/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Cristalografia por Raios X , Complexos Multiproteicos/metabolismo , Conformação Proteica , Multimerização Proteica , Schizosaccharomyces/genética
17.
Nucleic Acids Res ; 47(15): 7719-7733, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31328227

RESUMO

N6-methyladenosine (m6A) has recently been found abundantly on messenger RNA and shown to regulate most steps of mRNA metabolism. Several important m6A methyltransferases have been described functionally and structurally, but the enzymes responsible for installing one m6A residue on each subunit of human ribosomes at functionally important sites have eluded identification for over 30 years. Here, we identify METTL5 as the enzyme responsible for 18S rRNA m6A modification and confirm ZCCHC4 as the 28S rRNA modification enzyme. We show that METTL5 must form a heterodimeric complex with TRMT112, a known methyltransferase activator, to gain metabolic stability in cells. We provide the first atomic resolution structure of METTL5-TRMT112, supporting that its RNA-binding mode differs distinctly from that of other m6A RNA methyltransferases. On the basis of similarities with a DNA methyltransferase, we propose that METTL5-TRMT112 acts by extruding the adenosine to be modified from a double-stranded nucleic acid.


Assuntos
Adenosina/química , Regulação Neoplásica da Expressão Gênica , Metiltransferases/química , RNA Mensageiro/química , RNA Ribossômico 18S/química , Adenosina/genética , Adenosina/metabolismo , Sequência de Bases , Sítios de Ligação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cristalografia por Raios X , Deleção de Genes , Células HCT116 , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Transdução de Sinais , Especificidade por Substrato
18.
Nucleic Acids Res ; 47(14): 7548-7563, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31188444

RESUMO

Ribosome biogenesis is an essential process in all living cells, which entails countless highly sequential and dynamic structural reorganization events. These include formation of dozens RNA helices through Watson-Crick base-pairing within ribosomal RNAs (rRNAs) and between rRNAs and small nucleolar RNAs (snoRNAs), transient association of hundreds of proteinaceous assembly factors to nascent precursor (pre-)ribosomes, and stable assembly of ribosomal proteins. Unsurprisingly, the largest group of ribosome assembly factors are energy-consuming proteins (NTPases) including 25 RNA helicases in budding yeast. Among these, the DEAH-box Dhr1 is essential to displace the box C/D snoRNA U3 from the pre-rRNAs where it is bound in order to prevent premature formation of the central pseudoknot, a dramatic irreversible long-range interaction essential to the overall folding of the small ribosomal subunit. Here, we report the crystal structure of the Dhr1 helicase module, revealing the presence of a remarkable carboxyl-terminal domain essential for Dhr1 function in ribosome biogenesis in vivo and important for its interaction with its coactivator Utp14 in vitro. Furthermore, we report the functional consequences on ribosome biogenesis of DHX37 (human Dhr1) mutations found in patients suffering from microcephaly and other neurological diseases.


Assuntos
RNA Helicases DEAD-box/química , Domínios Proteicos , Subunidades Ribossômicas Menores/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Pareamento de Bases , Sítios de Ligação/genética , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Modelos Moleculares , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Genes (Basel) ; 10(1)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650668

RESUMO

The control of gene expression is a multi-layered process occurring at the level of DNA, RNA, and proteins. With the emergence of highly sensitive techniques, new aspects of RNA regulation have been uncovered leading to the emerging field of epitranscriptomics dealing with RNA modifications. Among those post-transcriptional modifications, N6-methyladenosine (m6A) is the most prevalent in messenger RNAs (mRNAs). This mark can either prevent or stimulate the formation of RNA-protein complexes, thereby influencing mRNA-related mechanisms and cellular processes. This review focuses on proteins containing a YTH domain (for YT521-B Homology), a small building block, that selectively detects the m6A nucleotide embedded within a consensus motif. Thereby, it contributes to the recruitment of various effectors involved in the control of mRNA fates through adjacent regions present in the different YTH-containing proteins.


Assuntos
Adenosina/análogos & derivados , Proteínas do Tecido Nervoso/metabolismo , Processamento Pós-Transcricional do RNA , Fatores de Processamento de RNA/metabolismo , Adenosina/metabolismo , Animais , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-30397101

RESUMO

In eukaryotes, the elimination of the m7GpppN mRNA cap, a process known as decapping, is a critical, largely irreversible and highly regulated step of mRNA decay that withdraws the targeted mRNAs from the pool of translatable templates. The decapping reaction is catalysed by a multi-protein complex formed by the Dcp2 catalytic subunit and its Dcp1 cofactor, a holoenzyme that is poorly active on its own and needs several accessory proteins (Lsm1-7 complex, Pat1, Edc1-2, Edc3 and/or EDC4) to be fully efficient. Here, we discuss the several crystal structures of Dcp2 domains bound to various partners (proteins or small molecules) determined in the last couple of years that have considerably improved our current understanding of how Dcp2, assisted by its various activators, is recruited to its mRNA targets and adopts its active conformation upon substrate recognition. We also describe how, over the years, elegant integrative structural biology approaches combined to biochemistry and genetics led to the identification of the correct structure of the active Dcp1-Dcp2 holoenzyme among the many available conformations trapped by X-ray crystallography.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.


Assuntos
Endorribonucleases/metabolismo , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Cristalografia por Raios X , Endorribonucleases/química , Capuzes de RNA/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/química , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...